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I. INTRODUCTION

Assessing the spatial distribution of rainfall is frequently 
required for water resource management, hydrologic and 
ecologic modeling, recharge assessment and irrigation 
scheduling. Rainfall data is traditionally presented as point 
data. However, hydrological modelling requires spatial 
representation of rainfall and thus the gauge measurements 
need to be transformed into areal coverages. Direct 
measurement of rainfall can only be achieved by rain-gauges, 
and rain-gauge networks are often installed to provide 
measurements that characterize the temporal and spatial 
variations of rainfall. Measured rainfall data are important to 
many problems in hydrologic analysis and designs. For 
example the ability of obtaining high resolution estimates of 
spatial variability in rainfall fields becomes important for 
identification of locally intense storms which could lead to 
floods and especially to flash floods. The accurate estimation 

 operational costs. It is thus necessary to estimate point rainfall 
at unrecorded locations from values at surrounding sites. 

Data collection from a finite number of monitoring points 
randomly or systematically distributed is necessary to infer the 
spatial variability of any parameter under study. The number 
and distribution of such stations are constrained by numerous 
factors of which cost and feasibility are quite common to 
consider. Therefore, it is imperative that an optimal 
monitoring network can be evolved using a minimum number 
of observation stations that can provide maximum 
information. At the same time configuration of a network also 
depends on the objectives and the end use of the project. 
Obviously even by using the best available 
interpolation/estimation techniques, there would certainly be 
an estimation error and the further objective should be to 
improve on this error in the form of minimization of variance 
of the estimation error. On the basis of this criterion a 
procedure of optimizing a raingauge network using a 
geostatistical technique can be developed. Performance 
evaluation of a network focuses on reducing the estimation 
variance of the areal rainfall. Geostatistical estimation 
variance reduction is one of the unbiased ways of optimizing a 
network with a desired degree of accuracy. 

Raingauge network designs consist of two key terms, 
e., an objective function and a typical algorithm for its

optimization. Rain gauge network design assumes a variety of 
approaches as pertains to the selection of these two key terms. 
These approaches concerning the objective function are 
generally known as variance-based methods, entropy based 
techniques, fractal-based methods, and distance-based 
approaches. After casting the required objective function, an 
optimization algorithm has to be employed to either minimize 
or maximize the corresponding objective function. Early 
studies were mostly based on random searches and 
enumeration. However, for the past three decades or so, 
researchers have considered some other more systematic of the spatial distribution of rainfall requires a very dense 

network of instruments, which entails large installation and 
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approaches, including the simplex method, the gradient 
method, simulated annealing, Tabu search genetic algorithm 
and Ant Colony as common optimization techniques in 
multiple fields of network design.  

II. METHODOLOGY
ArcGIS Geostatistical Analyt was chosen as the tool 

to implement the interpolations. Geostatistical Analyst is an 
extension of ArcMap used to generate surface from point data. 
The software is a powerful, user-friendly package and is 
flexible for implementation. ArcGIS Geostatistical Analyst 
provides capability for surface modeling using deterministic 
and geostatistical methods. The tools it provides are fully 
integrated with the GIS modeling environments and allow GIS 
professionals to generate interpolation models and assess their 
quality before using them in any further analysis. 

In Matlab, Global Optimization Toolbox provides 
methods that search for global solutions to problems that 
contain multiple maxima or minima. It includes global search, 
multistart, pattern search, genetic algorithm, and simulated 
annealing solvers. These solvers are used to solve optimization 
problems. Simulated annealing is an effective and commonly 
optimization algorithm used to solve non linear optimization 
problems. The method models the physical process of heating 
a material and then slowly lowering the temperature to 
decrease defects, thus minimizing the system energy.

An interpolation technique in which the surrounding measured 
values are weighted to derive a predicted value for an 
unmeasured location. Weights are based on the distance 
between the measured points, the prediction locations, and the 
overall spatial arrangement among the measured points. 
Kriging is unique among the interpolation methods in that it 
provides an easy method for characterizing the variance, or the 
precision, of predictions. Kriging is based on regionalized 
variable theory, which assumes that the spatial variation in the 
data being  modeled is homogeneous across the surface. That 
is, the same pattern of variation can be observed at all 
locations on the surface. Kriging was named for the South 
African mining engineer Danie G. Krige (1919). 

Kriging assumes that the distance or direction 
between sample points reflects a spatial correlation that can be 
used to explain variation in the surface. The Kriging tool fits a 
mathematical function to a specified number of points, or all 
points within a specified radius, to determine the output value 
for each location. Kriging is a multistep process; it includes 
exploratory statistical analysis of the data, variogram 
modeling, creating the surface, and (optionally) exploring a 
variance surface.  

(1) 

 (2) 

Kriging uses the semivariance to measure the spatially 
correlated component. The semivariance is computed by: 

(3) 

where γ( ) is the semivariance between known points, xi and 
xj, separated by the distance h and z is the attribute value 

semivariogram cloud plots γ(h) against h for all pairs 
of known points in a data set. A semivariogram cloud is an 
important tool for investigating the spatial variability of the 
phenomenon under study. But because it has all pairs of 
known points,a semivariogram cloud is difficult to manage 
and  use. A process called binning is typically used in kriging 
to average semivariance data by distance and direction. The 
first part of the binning process is to group pairs of sample 
points into lag classes. The second part of the binning process 
is to group pairs of sample points by direction. The 
Geostatistical Analyst extension to ArcGIS uses grid cell for 
binning. 

The result of the binning process is a set of bins that 
sort pairs of sample points by distance and direction. The next 
step is to compute the average semivariance by: 

(4) 

where γ(h) is the average semivariance between sample points 
separated by lag h, N(h) is the number of pairs of sample 
points sorted by direction in the bin, and z is the attribute 
value. 

A semivariogram plots the average semivariance 
against the average distance. Because of the directional 
component, one or more average semivariances may be 
plotted at same distance. If spatial dependence exists among 
the sample points, then pairs of points that are closer in 
distance will have more similar values than pairs that are 
farther apart. 

A semivariogram may be used alone as a measure of spatial 
autocorrelation in the data set. But to be used as an 
interpolator in kriging, the semivariogram must be fitted with 
a mathematical function or model. The fitted semivariogram 
can then be used for estimating the semivariance at any given 
distance. Fitting a model to a semivariogram is a difficult and 
often controversial task in geostatistics. One reason for the 
difficulty is the number of models to choose from. 
Geoostatistical Analyst offers 11 models. The other reason is 
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the lack of a standardized procedure for comparing the 
models.  

A fitted semivariogram can be dissected into three 
possible elements: nugget, range, and sill. The nugget is the 
semivariance at the distance of zero, representing 
measurement error. The range is the distance at which the 
semivariance starts level off. In other words, the range 
corresponds to the spatially correlated portion of the 
semivariogram. Beyond the range, the semivariance at which 
the levelling takes place is called the sill. The sill comprises 
two components: the nugget and the partial sill. 

Fig.1 Semivariogram Elements 
Two common models for fitting semivariograms are spherical 
(the default model in Geostatistisical Analyst) and 
exponential. A spherical model shows a progressive decrease 
of spatial dependence levels off. An exponential model 
exhibits a less gradual pattern than a spherical model. 

Below are the general shapes and the equations of the 
sherical models used to describe the semivariance.

Fig. 2 Spherical semivariogram model 

(5) 

(6) 

Ordinary kriging focuses on the spatially correlated 
component and uses the fitted semivariogram directly for 
interpolation. The general equation for estimating the z value 
at a point is: 

 (7) 

where z(x0) is the estimated value, z(xi) is the known value at 
point xi, wi is the weight associated with point xi and n is the 
number sample points used in estimation. The weight can be 
derived from solving a set of simultaneous equations. 

 (8) 

(9) 

where γ(hij) is the semivariance between known points i and j, 
γ(hi0) is the semivariance between the ith known point and the
point to be estimated and λ is the Lagrange multiplier, which 
is added to ensure the minimum possible estimation error. 
Once the weights are solved, Eqn (3.10) can be used to 
estimate z(xo) 

The weights used in kriging involve not only the 
semivariances between the point to be estimated and the 
known point but also those between the known points. This 
differs from the IDW Method, which uses only weights 
applicable to the point to be estimated and the known points. 
Another important difference between kriging and other local 
methods is that kriging produces a variance measure for each 
estimated point to indicate the reliability of the estimation. 
The variance estimation  can be calculated by: 

(10) 

In optimization a measure of spatial accuracy (variance of the 
error of estimation obtained by kriging, σ2) are combined in a 
single model and subjected to minimization. Simulated 
annealing (SA) was used to find the solution.The proposed 
methodology consists of two steps; in the first it is necessary 
to define an objective function to be minimized. The second
step of the proposed methodology consists in the application 
of so-called “simulated annealing”, which provides a number 
of random configurations “driven” by the objective function. 
This method, implemented by Deutsch and Journel (1992).
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The objective function (OF) is a quantitative formulation of 
the feature of the monitoring network to be optimized. In 
practice, once the problem and the monitoring objectives have 
been set, the choice of the specific OF depends on the 
available information. For example, if the optimization 
problem consists in adding one monitoring point to an existing 
network and the specific goal is to reduce the estimation 
uncertainty of a given parameter whose variogram model is a
priori known, the Kriging Estimation Variance (KEV) can be 
a suitable OF.

(11) 
OFs quantify the change of ordinary kriging variance 

produced by adding or removing a location from the network 
(D’Agostino et al., 1997; D’Agostino et al., 1998; Barca et al., 
2008).The kriging estimation variance is a measure of the 
estimation accuracy  and only depends on the geometric 
configuration of the data points, and, once a variogram model 
is defined, it is possible to change data locations and calculate 
the estimation variance again. The coding of the objective 
function can be done in Matlab.

Simulated annealing is a stochastic global minimization 
technique. The theory of “simulated annealing” is based on the 
analogy with the organization of the atom network of a metal 
when it undergoes a process of temperature change (abrupt 
heating and slow cooling). Following this process, the atoms 
of the metal change their arrangement to a configuration of 
low energetic maintenance cost. In the analogy, the 
configuration of the atoms corresponds to that of the sampling 
points while the objective function corresponds to the energy 
of the system (Pardo-Igùzquiza 1998, Deutsch and Cockerham 
1994). 

The simulated annealing algorithm simulates the 
metallurgical process of annealing (when a material undergoes 
extended heating and is then slowly cooled). There is an 
imaginary analogy between the disposition of the rain gauges 
in a given area, and the state of atoms/molecules in a lattice-
like physical system. Each configuration of atoms/molecules 
in the lattice is characterised by a given energy. At high 
temperatures, thermal vibrations permit a reordering of the 
atoms/molecules to highly structured lattices of low energy. 
As temperature decreases slowly, the thermal vibrations 
attenuate and the system tends to the highest structured 
(lowest energy) configuration. 

In the rain gauge network problem, the energy of 
each configuration is given by the value of the objective 
function, and temperature is a fictitious parameter that is 
calibrated empirically for a given data set. At the beginning of 
the simulation the temperature must be high enough so as to 
permit the possibility of any configuration of rain gauges, and 
the cooling of the system is done following a precise 
annealing schedule. 

In algorithmic terms, with reference to the described 
metallurgical analogy (Metropolis et al. 1953), assign an 
initial value to the temperature of the system, then randomly 
choose a starting configuration from all the possible 
configurations, and determine the corresponding value of the 
objective function, which is called energy. The temperature 
drives the duration of the process and, at every following step 
it decreases down to zero, which is the final temperature; the 
slower the cooling the higher the probability of finding the 
optimal configuration is, while the greater the initial 
temperature, the higher is the probability that the final 
configuration matches the absolute optimum that is the 
absolute minimum for the objective function. The starting 
configuration is perturbed in a randomised way, varying the 
position of only one sampling point of the monitoring network 
at a time, and the corresponding value of the objective 
function is computed again. If the perturbed configuration is 
better than the previous one (i.e.: the value of the objective 
function decreases) it is assumed as a transitory excellent 
solution; otherwise, the new configuration is not automatically 
discharged, as would happen with a classical method of 
optimisation, but it is submitted to a probabilistic criterion of 
acceptance which compares it again with the transitory 
optimal configuration. If this probabilistic criterion establishes 
that the configuration is acceptable, it is accepted according to 
the probability factor P:

(12)

where ΔE represents the variation of the objective function, 
and Ti the current value of the temperature parameter, is 
smaller than a randomly generated number. This test allows 
the method to avoid the process of converging to a local 
optimum rather than the global one. 

1. Choose a random Xi, select the initial system
temperature, and outline the cooling (ie. annealing)
schedule.

2. Evaluate E(Xi) using a simulation model
3. Perturb Xi to obtain a neighbouring Design Vector

(Xi +1)
4. Evaluate E(Xi+1) using a simulation model
5. If E(Xi +1)< E(Xi), Xi +1 is the new current solution
6. If E (Xi +1)> E(Xi), then accept Xi +1 as the new

current solution with a probability e(Δ/T)where Δ=
E(Xi +1) -E(Xi).

7. Reduce T according to the cooling schedule.
8. Terminate the algorithm.

where 

1. Given the k number of points to be added to the
existing network formed by n points, the value of the
kriging variance must be computed at all unsampled
points over the interest area on the basis of
information provided by the existing network
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2. Find the co-ordinate where the kriging variance value
is the maximum

3. The kriging variance must be recomputed at the
unsampled points adding to the network the point
found at the previous step

4. Repeat points 2) and 3) of the procedure until all k
points are added to the existing network.

The Simulated Annealing solver in Matlab optimization tool 
assumes the objective function will take one input x, where x 
has as many elements as the number of variables in the 
problem. The objective function computes the scalar value of 
the objective and returns it in its single return argument y. To 
minimize the objective function using the 
SIMULANNEALBND function, need to pass in a function 
handle to the objective function as well as specifying a start 
point as the second argument. The first two output arguments 
returned by SIMULANNEALBND are x, the best point 
found, and fval, the function value at the best point. A third 
output argument, exitFlag returns a flag corresponding to the 
reason SIMULANNEALBND stopped.
SIMULANNEALBND can also return a fourth 
argument, output, which contains information about the 
performance of the solver.

III.STUDY AREA

The Karuvannur watershed lies between 100 15’ to 100 40’ 
North latitude and 760 00’ to 760 35’ East longitude within 
Thrissur district and shares the Western boundary of Palakkad 
district of Kerala and thereby covers an area of 1054 km². It is 
bounded by Thrissur and Chavakkad Taluks of Thrissur 
district in the North, Mukundapuram and Kodungallur Taluks 
of Thrissur district in the South, Alathur and Chittor Taluks of 
Palakkad district in the East and the Arabian Sea in the West.

The Karuvannur River originates from the Western 
Ghats and is fed by its two main tributaries, viz., the Manali 
and the Kurumali. The Manali River originates from Ponmudi 
in the border of Thrissur and Palakkad districts at an elevation 
of + 928 m. The Chimony and Muply, the two subtributaries 
of the Kurumali originate from Pundimudi at an elevation of + 
1116 m. The other streams which feed these tributaries include 
the Chauralaar, Chimonipuzha, Talikuzhi, Mupilipuzha, 
Idukuparathodu, Sinikuzhithodu, Manaliar, Pullathodu and 
Kunjirupuzha. Peechi dam constructed across Manali River 
and Chimmoni dam across Kurumali River help to control the 
flood and irrigate the land. 

The Thrissur district has a tropical humid climate 
with an oppressive hot season and plentiful seasonal rainfall. 
The glaring aspect of the land use of the district is that it is 
blessed with potential resources such as agricultural land and 
forest. Karuvannur watershed is mainly covered with mixed 
plantation and forest area. The soil textures of Karuvannur 
watershed are mainly gravelly clay, clay, loam, sand and 
gravelly loam. The water penetration depends upon type soil 
texture. Sand has high water penetration capacity and clay has 
high water holding capacity than any other soil type. 

Karuvannur river basin is one of the major river 
basins within the district with an  actual utilizable water 
resource of 623 Mm3 of which the net utilizable surface and 
ground water resources are 519.8 Mm3 and 103.2 Mm3

respectively. Karuvannur river has a drainage area of 1054 
km2, stream length 48 km, average monsoon flow of 1275 
Mm3, average lean flow 55 Mm3 and total flow 1330 Mm3

(Rajagopalan and Sushanth, 2001). The average rainfall in the 
low land of the river basin was estimated to be 2858 mm, the 
midland 3011mm and the highland 2851mm. About 60 per 
cent of the rainfall is received during south west monsoon 
period, 30 per cent from north east monsoon and 10 per cent in 
the pre-monsoon period. 

Fig. 3. Location Map of Study Area

IV.DATA DESCRIPTIONS
Data preparation and analysis was carried out using Ms Office 
excel and ArcGIS 10. ArcGIS 10 provided the GIS platform 
for visualization, manipulation of data production of maps. 
The ArcGIS Geostatistical Analyst tool was used for 
interpolation, production of maps and error plot. The tool 
provides advanced statistical tools for surface generation, 
analysis and mapping of continuous datasets. 
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Daily rainfall data for 21 raingauge stations, for the year 2012 
were obtained from the Hydrology Department. Out of the 
same 14 raingauge stations were within the Karuvannur river 
basin and 7 stations lie around the basin. The heaviest rainfall 
event of the year 2012 was selected for the augmentation of 
raingauge network. This is due to the fact that this rainfall 
event was recorded at all the stations which eliminate the 
skewness that would be introduced by stations with no rainfall  

Peechi 760 21’ 59” 100 31’ 30” 95
Pudukkad 760 22’ 49” 100 26’ 15” 39
Triprayar 760 07’ 18” 100 23’ 45” 8
Echippara 760 27’ 00” 100 26’ 27” 47
Enamakkal 760 06’ 30” 100 30’ 30” -4
Irumpupalam 760 23’ 15” 100 34’ 15” 86
Karikkadavu 760 26’ 47” 100 22’ 16” 76
Mupli 760 23’ 46” 100 25’ 00” 42
Mathilakam 760 10’ 37” 100 17’ 37” 11
Ollukara 760 16’ 00” 100 32’ 00” 29
Pottimada 760 21’ 59” 100 34’ 45” 80
Vaniampara 760 25’ 30” 100 34’ 20” 109
Varandharapilly 760 20’ 40” 100 25’ 20” 24
Panachery 760 18’ 00” 100 33 ’00” 27

vettilappara 760 32’ 00” 100 17’ 30” 88

Parambikulam 760 46’ 00” 100 23’ 00” 576
Pazhayannur 760 20’ 30” 100 40’ 20” 49

Thumburmuzhy 760 29’ 00” 100 18’ 00” 69

Thunakadavu 760 47’ 01” 100 25’ 00” 655

Vynthala 760 18’ 01” 100 15’ 50” 13

Kunnamkulam 760 04’ 00” 100 38’ 45” 24

The Digital Elevation Model (DEM) well define the 
topography of the area by describing the elevation of any point 
at a given location and specific spatial resolution as a digital 
file. The DEM was downloaded from the site, 
http://srtm.csi.cgiar.org/index.asp. Accuracy of DEM is better 
for SRTM (Shuttle Radar Topography Mission) than ASTER 
(Advanced Space borne Thermal Emission and Reflection) 
and hence the same was used in the study, though the spatial 
resolution of SRTM is 90m and that of ASTER is 30m. The 
DEM data was loaded into ArcGIS it was projected into one 
equal area projected coordinate system. Normally, Universal 
Transverse Mercator (UTM) is used. 

Fig4.

To create the shape file of the Karuvannur river basin 
boundary, toposheets for the required area was collected from 
the Kerala Forest Research Institute, Peechi. The basin 
boundary from the watershed atlas was georeferenced with 
respect to the mosaiced toposheets which was later digitized to 
obtain the boundary shapefile. To get the location map of 
raingauge station, the MS Excel sheet that contain the latitude 
and longitude of the stations were exported to the ArcGIS 
platform.  

Fig.5 Karuvannur River Basin
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Fig. 5 Location Map of Raingauge Stations in Karuvannur River Basin 

V. RESULT AND DISCUSSIONS

It is clear that the estimated variance is an important factor for 
determining the location of raingauges, the variance depands 
only on the geometrical location of the raingauges. Obviously, 
the choice of variogram model and its parameters is 
conditioned by the particular set of available data. But once 
the variogram model is chosen, the variance can be viewed as 
depending exclusively on the location of the raingauges. 
Hence it becomes possible to compute the error variance 
associated with any set of hypothetical data points without 
getting actual data at these points.  

 The estimation variance is thus very suitable objective 
function for network optimization. The existing network of 
raingauges can be replaced or supplemented by the best 
representative new set of raingauge at specified locations. 

Spatial simulated annealing (SSA) has been applied to the 
selected Objective Function, namely the Kriging Estimation 
Variance (KEV). In the initial stage of optimization, 
variogram model was fitted to data set to get the varigram 
model parameter. Objective function was generated from the 
available rainfall data, Coordinates of available raingauge 
stations and variogram model parameter.   

Variogram model of data set was estimated in Arc GIS. Fig. 7 
shows the Experimental semivariogram cloud. It is then 
binned and averaged. Spherical semivariogram model was 
fitted to the averaged semivariance as shown in Fig. 8

Fig. 7 Experimental semivariogram cloud

Fig. 8 Fitted Spherical Semivariogram

T 4. V .

Spherical 218.94 983.2158 28012

When the simulated annealing solver starts running for 
the selected objective function and specified annealing 
parameter, it performing a number of iterations depending on 
the specific optimization setting, and stops when a suitable 
criterion was met.Stopping criteria was selected as Function 
tolerance ie, If the OF value, for a long run of iterations, does 
not change significantly with respect a tolerance value given 
by the user, the run stops.

During the whole execution, simulated annealing 
optimization tool allows the user to follow the optimization 
evolution by means of a specific graphical interface. Finally, 
once terminated the simulation, it provide a comprehensive 
report of optimization results. For each run gauges were added 
at sites with large estimation variance, and the process was 
repeated until the average prediction error could not be 
reduced further. The sites that resulted in the most significant 
reduction of estimation error were identified as place for new 
precipitation gauges.
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Fig. 9 shows the result of the optimization simulation 
performed with the simulated annealing tool in Matlab. 

Fig. 9 Simulated Annealing Solver in Optimization Toolbox

Fig. 10 shows the graphical interface of the simulated 
annealing solver in the optimization toolbox. 

Fig. 10 Plot Function of Simulated Annealing Run

T . R A G
L

New station 1 635894.203 1148066.836 -1

New station 2 638602.029 1156043.253 10

New station 3 644661.95 1159162.093 56

New station 4 670518.589 1155401.9 867

New station 5 647259.746 1144478.28 22

Fig. 11 shows the location map of rain gauge stations. Black 
dotes in the figure are those already existing stations and Red 
dots are those added to the existing monitoring network as 
requested. 

Fig. 11 Location map of existing and new stations

Fig. 12 Prediction Standard Error before Augmentation
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Fig. 13 Prediction Standard Error after Augmentation

In Fig. 14, the plot of average prediction error versus the 
number of samples is shown. The error of estimation 
decreases with the optimal location of additional points. 

Fig. 14 Average prediction error of estimation versus the number of 
samples in the augmentation.

VI. CONCLUSIONS

The Spatial Simulated Annealing (SSA) can be applied to the 
selected Objective Function (OF), namely the Kriging 
Estimation Variance (KEV) to augment the raingauge 
network.The algorithm always converges towards the global 
optimum or very near the global optimum and it is easy to 
implement as well as being economic in computer terms.The 
result of the simulated annealing run defines the UTM co-
ordinates of the optimal locations where the 5 new raingauge
stations should be placed.Gauges were added at sites with 
large estimation variance, and the process was repeated until 
the average prediction error could not be reduced further. The 
sites that resulted in the most significant reduction of 
estimation error were identified as place for new precipitation 
gauges.
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